cyclic shift - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

cyclic shift - перевод на русский

SHIFT WHOSE LAST ENTRY MOVED TO FIRST PLACE (OR VICE VERSA)
Cyclic shift; Circular Shift; Cyclic Shift; ROtate Right; ROtate Left; Cyclic rotation; Bitwise rotate

cyclic shift         

вычислительная техника

круговой сдвиг

логический сдвиг

cyclic shift         
циклический сдвиг
circular shift         
циклический сдвиг

Определение

Красное смещение

понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название "К. с." связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин "К. с." используется для обозначения двух явлений - космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик (См. Галактики), квазаров (См. Квазары)) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912-14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (ν0- ν)/ν0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (ν0 - частота некоторой линии спектра источника, ν - частота той же линии, регистрируемая приёмником; ν<ν0). Такое изменение частоты - характерное свойство доплеровского смещения и фактически исключает все др. истолкования К. с.

В относительности теории (См. Относительности теория) доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет υ (в случае метагалактич. К. с. υ - это Лучевая скорость), то

(c - скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: . Из этого уравнения следует, что при z → ∞ скорость v приближается к скорости света, оставаясь всегда меньше её (v < с). При скорости v, намного меньшей скорости света (υ << с), формула упрощается: υ cz. Закон Хаббла в этом случае записывается в форме υ = cz = Hr (r - расстояние, Н - постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии (См. Космология): с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ± 5 (км/сек)/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z ≈ 0,2, соответствующие скорости υ ≈ 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10\%, т. е. такая же, как погрешность определения Н). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z ≈ 2 и больше. При смещениях z = 2 скорость υ ≈ 0,8․с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты - нестационарность и кривизна пространства - времени (См. Кривизна пространства-времени); в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний - расстояние по К. с. - составляет здесь, очевидно, r= υlH = 4,5 млрд. пс). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейном в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью υ, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца υ = 0,6 км/сек, для плотной звезды Сириус В υ = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: υ = 7,5․10-5см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном (См. Коллапс гравитационный)) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, § 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.

Википедия

Circular shift

In combinatorial mathematics, a circular shift is the operation of rearranging the entries in a tuple, either by moving the final entry to the first position, while shifting all other entries to the next position, or by performing the inverse operation. A circular shift is a special kind of cyclic permutation, which in turn is a special kind of permutation. Formally, a circular shift is a permutation σ of the n entries in the tuple such that either

σ ( i ) ( i + 1 ) {\displaystyle \sigma (i)\equiv (i+1)} modulo n, for all entries i = 1, ..., n

or

σ ( i ) ( i 1 ) {\displaystyle \sigma (i)\equiv (i-1)} modulo n, for all entries i = 1, ..., n.

The result of repeatedly applying circular shifts to a given tuple are also called the circular shifts of the tuple.

For example, repeatedly applying circular shifts to the four-tuple (a, b, c, d) successively gives

  • (d, a, b, c),
  • (c, d, a, b),
  • (b, c, d, a),
  • (a, b, c, d) (the original four-tuple),

and then the sequence repeats; this four-tuple therefore has four distinct circular shifts. However, not all n-tuples have n distinct circular shifts. For instance, the 4-tuple (a, b, a, b) only has 2 distinct circular shifts. The number of distinct circular shifts of an n-tuple is n k {\displaystyle {\frac {n}{k}}} , where k is a divisor of n, indicating the maximal number of repeats over all subpatterns.

In computer programming, a bitwise rotation, also known as a circular shift, is a bitwise operation that shifts all bits of its operand. Unlike an arithmetic shift, a circular shift does not preserve a number's sign bit or distinguish a floating-point number's exponent from its significand. Unlike a logical shift, the vacant bit positions are not filled in with zeros but are filled in with the bits that are shifted out of the sequence.

Как переводится cyclic shift на Русский язык